
Step-by-Step Guide for Integrating NConnect Framework for iOS

24 July 2023
Version: 3.1

1

Contents

Introduction... 3
System Requirements...4
Installation... 5
Integration Steps... 6
RFID Reader Connection.. 9
RFID Reader Operations...9
Best Practices..11

2

Introduction
Welcome to the NConnectFramework integration guide for iOS, macOS, and iPadOS! The
NConnectFramework is a powerful Swift-based framework that facilitates seamless communication
with RFID (Radio-Frequency Identification) reader devices. This document aims to provide
developers with a comprehensive understanding of the framework's components and their respective
roles, allowing for a smooth and efficient integration process.

Understanding the NConnectFlow

1. Obtaining the Reader Instance: The integration begins with obtaining an instance of the rfid
reader from the RfidFactory. This interface serves as the entry point for interacting with RFID reader
devices.

2. Configuration of Scanning Parameters: Once the reader interface is acquired, it is essential to
configure it with appropriate values for various scanning parameters. These parameters define the
behavior of the RFID reader during scanning operations.

3. Registering an RfidEventListener: To receive real-time updates and notifications from the RFID
reader, an RfidEventListener is registered with the RfidReader. This listener acts as a callback
mechanism, enabling the implementing application to respond to events raised by the RFID reader.

4. Initiating Scanning: After the necessary configurations and event listener registration, the
RfidReader is instructed to commence scanning for RFID tags or other operations.

5. Asynchronous Callbacks: As the RFID reader detects and processes tags or other events, the
relevant data is asynchronously relayed to the implementing application. This is achieved through
callbacks to the RfidEventListener registered with the RfidReader. These callbacks provide access to
real-time data, allowing your application to perform desired actions in response to the RFID reader's
activities.

Let's dive into the integration journey and unlock the possibilities that the NConnectFramework brings
to your application!

3

System Requirements
Supported Platforms

iOS
iPadOS
macOS

Minimum OS version required:
iOS: 13.0
iPadOS: 13.0
macOS: 13.0

Tools required:
XCode version 14.3.1 or later

4

Installation
Drag and drop the framework files (usually with a .framework extension) into your Xcode project.

Make sure to select the appropriate target(s) when prompted to add the files.

After installation, ensure that the NConnectFramework is listed in your project's "Frameworks and
Libraries" section in Xcode.

If you're using Cocoapods, check that the import NConnectFramework statement works correctly
in your Swift files.

5

Integration Steps
Before we begin make sure app has following permission
Bluetooth
Location

Getting RFID Reader Instance
In order to establish communication with the RFID reader device, you need to obtain an instance of
the RFID reader. The NConnectFramework provides a convenient method to achieve this. Here's how
you can do it:

import NConnectFramework

do {

// Specify the readerMake, hostname, and license parameters as per your

reader's configuration.

let reader = try RfidFactory.getRfidReader(make: readerMake, hostname:

hostname, license: license)

// 'reader' now holds the instance of the RFID reader.

} catch let error {

// Handle any errors that might occur during the reader initialization.

print("Error occurred while obtaining the RFID reader instance:

\(error.localizedDescription)")

}

Explanation:

The RfidFactory.getRfidReader(make:hostname:license:) method is used to create an
instance of the RFID reader.

You need to provide the appropriate values for the readerMake, hostname, and license
parameters when calling this method. These values will vary based on the type and model of your
RFID reader device, and the licensing requirements of the NConnectFramework.

Handling Events and Registering Event Listener

In this step, we'll register an event listener that implements the RfidEventListener protocol to
handle various events raised by the RFID reader, such as tag data, errors, connection status
changes, and scan triggers. Here's how you can do it:

6

import NConnectFramework

// Create and register the event listener to handle RFID reader events.

let eventListener = createEventListener()

func createEventListener() -> RfidEventListener {

class RFIDEventListenerImplementation: RfidEventListener {

func handleData(tagData: String) {

// Handle tag data received from the RFID reader.

var response = [String: Any?]()

response["event"] = "handleData"

response["readerMac"] = mac

// response["readTag"] = DataConvertor.hexToAscii(hexString:

tagData)

response["readTag"] = tagData

// Code for further processing of tag data...

}

func handleError(errorCode: NConnectFramework.ErrorCode,

description: String) {

// Handle errors raised by the RFID reader.

var response = [String: Any?]()

response["event"] = "handleError"

response["readerMac"] = mac

response["error"] = errorCode

// Code for error handling...

}

func handleEvent(eventCode: NConnectFramework.EventCode,

description: String) {

// Handle various events raised by the RFID reader.

var eventCodeStr: String

switch eventCode {

7

case .CONNECTED:

eventCodeStr = "CONNECTED"

case .DISCONNECTED:

eventCodeStr = "DISCONNECTED"

case .TRIGGER_ON:

eventCodeStr = "TRIGGER_ON"

case .TRIGGER_OFF:

eventCodeStr = "TRIGGER_OFF"

default:

eventCodeStr = ""

}

// Code for further processing of events...

}

}

return RFIDEventListenerImplementation()

}

// Register the event listener with the RFID reader.

reader.registerListener(listener: eventListener)

Explanation:
The RfidEventListener protocol provides three required methods: handleData, handleError,
and handleEvent. These methods are called when the corresponding events occur.

In this example, we've implemented a custom class RFIDEventListenerImplementation that
conforms to the RfidEventListener protocol. It handles tag data, errors, and various event codes
raised by the RFID reader.

The handleData method is called when tag data is received from the RFID reader.

The handleError method is called when an error occurs during communication with the RFID
reader.

The handleEvent method is called for events like CONNECTED, DISCONNECTED,
TRIGGER_ON, TRIGGER_OFF, and any other events that may occur in the future.

8

The createEventListener() function creates an instance of the
RFIDEventListenerImplementation class and returns it as an RfidEventListener.

RFID Reader Connection
Establishing a connection to the RFID reader is a crucial step in the integration process. Once you
have obtained the RFID reader instance, you can attempt to connect to the reader using the
connect() method. Upon successful connection, the RFIDEventListener will receive the
CONNECTED event, indicating that the RFID reader is now connected and ready for further operations.

// Assuming 'reader' is the RFID reader instance obtained previously.

do {

// Attempt to connect to the RFID reader.

try reader.connect()

} catch let error {

print("Error occurred while connecting to the RFID reader:

\(error.localizedDescription)")

}

Explanation:
The connect() method is called on the RFID reader instance to initiate the connection with the
RFID reader specified during the creation of the reader instance using
RfidFactory.getRfidReader.

If the connection to the RFID reader is successful, the RFIDEventListener registered with the
reader will receive the CONNECTED event in the handleEvent method.

RFID Reader Operations
In this step, we will cover some essential RFID reader operations, such as starting and stopping
scanning, setting power levels, and retrieving battery information.

Starting and Stopping Scanning

Scanning is the process of detecting RFID tags in the reader's range. You can start and stop
scanning using the startScan() and stopScan() functions, respectively.
import NConnectFramework

// Assuming 'reader' is the RFID reader instance obtained previously.
9

// Start scanning for RFID tags.

reader.startScan()

// Stop scanning for RFID tags.

reader.stopScan()

Setting Power Level

The power level determines the strength of the RFID reader's signal, which affects the reading range
and sensitivity to tag detection. You can set the power level using the setPower(power:) function.
The power parameter should be a Double value between 0.0 and 30.0, where 0.0 represents the
lowest power level, and 30.0 represents the highest.

import NConnectFramework

// Assuming 'reader' is the RFID reader instance obtained previously.

let powerLevel: Double = 20.0 // Replace with your desired power level

value.

do {

try reader.setPower(power: powerLevel)

// Power level set successfully.

} catch let error {

print("Error occurred while setting power level:

\(error.localizedDescription)")

}

Retrieving Power Level

You can retrieve the current power level set on the RFID reader using the getPower() function.

import NConnectFramework

// Assuming 'reader' is the RFID reader instance obtained previously.

10

do {

let currentPowerLevel = try reader.getPower()

print("Current Power Level: \(currentPowerLevel)")

} catch let error {

print("Error occurred while retrieving power level:

\(error.localizedDescription)")

}

Retrieving Battery Level

To check the battery level of the RFID reader, you can use the getBatteryLevel() function. The
function returns a Double value representing the battery level, where 0.0 indicates a fully discharged
battery, and 100.0 indicates a fully charged battery.

import NConnectFramework

// Assuming 'reader' is the RFID reader instance obtained previously.

do {

let batteryLevel = try reader.getBatteryLevel()

print("Battery Level: \(batteryLevel)%")

} catch let error {

print("Error occurred while retrieving battery level:

\(error.localizedDescription)")

}

Best Practices
Order of Operations

Ensure you register the RFIDEventListener with the reader before attempting to connect to the
RFID reader using connect().

Following the correct order of operations ensures that you can receive the CONNECTED event if the
connection is successful and be ready to handle further RFID reader events.

Avoid Method Conflicts

11

Avoid calling any RFID reader method (e.g., startScan(), stopScan(), setPower(power:),
etc.) while scanning is already in progress.

Conflicting method calls during scanning can lead to unexpected behavior or errors in RFID reader
operations.

Implement a mechanism to track the scanning state and ensure that only one scanning operation is
performed at a time.

Proper Error Handling

Always handle errors that may occur during RFID reader operations, such as connection errors,
power level setting errors, or tag data handling errors.

Proper error handling ensures that your application gracefully recovers from any unexpected
situations and provides appropriate feedback to users.

Event Handling

Handle all RFID reader events appropriately and respond to them accordingly.

Events like CONNECTED, DISCONNECTED, TRIGGER_ON, TRIGGER_OFF, and others provide valuable
information about the RFID reader's state and activities.

Implement event handlers that perform the necessary actions based on the event received.

12

